The Taming of the Camel

An Overview of Perl 5.0

Larry Wall
<lwall@netlabs.com>

Copyright 1994

How It Was Back Then
(Sort Of)

How It Really Was Back Then

2

=

Q

=

2

c

©

=
Whipuptitude —»
The Hatching of an Idea

2

=

Q

=

2

c

©

=

Whipuptitude —»

Humble (?) Beginnings

* Scalars to Represent Values
To give Perl a good memory.
* Filehandles to Represent Files
To give Perl good “legs”.
» Regular Expressions for Extraction
To give Perl good “eyes”.
» Literals that Allow Interpolation
For easy variable-width formatting.
» Formats for Reporting
For easy fixed-width formatting.

The Inputs

Comp Sci

\

Linguistics —» Perl «—Common sense
A

Art

What to Take, What to Leave Behind

explicit string lengths

substitution
translation

sed

functionitis

impenetrability
limitations
implicit newlines

interpolation

eval

lists
processes

C

control
numbers
named I/O
system calls
1/O limitations
control limitations
implicit looping
v sloth
Per| = awk
A strings
associations
cycle time

sh

multiple pass
backslashitis
compile-as-you-go
non-portability
list/string confusion

Bastardization

or

Hybrid Vigor?

My Irrationalities

- Syntax shouldn’t dangle in the wind

- Ordinary people like me hate abstraction
- C is wonderful

- Cis awful

- awk is neither

- Language is an amoral medium

- Ugly can be beautiful

- Beautiful can get ugly real quick

- Visual metaphors are for more than just
poetry

- | don’t care what other people think
- | care what other people think
- | think God has free will

Common Fallacies of Language Design

* “We need to start over from scratch.”

« “If we put in English phrases, that makes it readable.”
* “Simple languages produce simple solutions.”

« “If | wanted it fast, I'd write it in C.”

« | thought of a way to do it, so it must be right.”

* “This is a VHLL. Who cares about bits?”

* “You can do anything with NAND gates.”

« “Users care about elegance.”

* “The specification is good enough.”

« “Abstraction equals Usability.”

* “The common core should be as small as possible.”
« “Let’s make this easy for the computer.”

* “Most programs are designed top down.”

 “Text processing doesn’t matter.”

* “People should never have been given free will.”

10

Larry’s Conjecture

For most people, the perceived usefulness
of a computer language is inversely
proportional to the number of theoretical
axes that the language attempts to grind.

11

Waterfall or Whirlpool?

Specification

Coding

Testing

12

The Unix Family Tree

V6

AN\

/

13

The C Family Tree

K&R C

14

The Perl Family Tree

(under construction)

15

Easy Migration

C sed awk sh

s2p azp

expressions connections

Perl

16

The Other Perl Family Tree

AN

\/

Perl

17

Visual Distinctions

- You-pick-'em quotes
s/foo/bar/, m//, trlll, g/l, qa/l, gx//
trla-z][A-Z]
line-oriented

- Classes of operators
==vseqVvs-e

- Formats
@<<<z<gg<<<<<< @[||[|I[]] @>>>>>>>>>>>>>

- Types
$foo @bar %baz *beep

- Mumbles

print “ENTERING FINAL PHASE!I\n" if $verbose;
open(HANDLE, “myfile”) || die “Can’t open: $!”;

18

How To Get There From Here

- Diagonalization

o

>

- All you need to know is that...
just_do_it()
- Landmarks
“I'll know it when | see it.”
- Geography vs. Orthography
“Who put that mountain there during the night?”
- Get a faster camel

19

English as She is Programmed

e Familiar syntax
redo LINE if $something_left;
chop $head if traitor();
$california or &bust;
do { this() } until $done;

* Indirect objects
give $DOG $hone;

* Verbing nouns
dog($dog)

* Anything as a Boolean

if (@foo)
if (grep(/"#/, @lines)

* Aggressive tokenization
[fool / Ibar/ . .20 < <STDIN> % %bletch

20

Those Funny Symbols

$ = “the” (singular)
@= “those” (plural)
%= “relationship”
& = “do”

* = "any sort of”

“No, no, hannie in foodie!”

21

Natural Language Concepts

 Learn it once, use it many times

* Learn as you go

» Many acceptable levels of competence

» Multiple ways to say the same thing

* No shame in borrowing

¢ Indeterminate dimensionality

* Local ambiguity is okay

 Punctuation by prosody and inflection

» Disambiguation by number, case and word order
* Topicalization

* Discourse structure

* Pronominalization

* No theoretical axes to grind

* Style not enforced except by peer pressure
 Cooperative design

* “Inevitable” Divergence

22

Perl 5: The Big Nouns

- Compatibility

- Extensibility

- Usability

- Reusabillity

- Readability

- Scalability

- Maintainability
- Portability

- Responsibility
- Embeddibility
- Respectability?

23

Deprecations and Depreciations

Deprecated for “action at a distance”
vec() to enable bitwise ops
"@literal”
$~k
St
$

Deprecated syntax
do verb()
if BLOCK BLOCK

Optionally deprecatable via compiler directive
Barewords
Symbolic references
Unqualified global variables

Depreciations (a better way provided)
select(HANDLE)
Verb markers
" as package prefix delimiter
Punctuation as variable names

24

What's New

* Nearly a complete rewrite

 Usually 25-40% Faster

 Simpler grammar

* Much better diagnostics and docs

* Lexical scoping

* Arbitrarily nested data structures

* Anonymous data structures and functions
 Easy objected-oriented programming

* Modules

« External subroutines in C or C++ via XS
* Dynamic linking on many architectures
* Autoloading subroutines

» POSIX and other standard modules

* Improved configuration

» Package constructors and destructors

* Regular expression enhancements

25

New Operators

« Ultra-low precedence logicals
and, or, xor, not

» chomp($line)

» exists $hash{$key}
s tie/untie

* abs($num)

* chr($num)

e access to various internal functions
uc, ucfirst, Ic, Icfirst
quotemeta
glob
formline

 qw(foo bar baz)

* bless($ref)

* pos($string)

* goto &subroutine;

26

e Arrow as synonym

Miscellaneous Perl 5 Stuff

for comma

%day = (Sun =>0, Mon => 1, ...);

$childmess = mget(

ocC => $0c,
Ol => $oi,
SCOPE => $scopel,

ATTR_ID_LIST => $no_attrs);

* Functions as unary or list operators
$age = -M($filename);
@foo = split /¥, $bar, 3;

* You can now return from an eval

$prog = "return
eval $prog;

* Error propagation
die if $@;

* Lexical scoping
my $var = shift;

$a?1:2"

27

BEGIN and END

* Explicitly in some pseudo awk:

#!/usr/bin/perl -nl

BEGIN {
$accum = 0;

}
$accum +=$_;

END {
print $accum;

}

* Implicitly in use POSIX qw(setlocale fentl_h);

BEGIN {
require POSIX;

import POSIX qw(setlocale fcntl_h);

28

References

Creating references from named objects
$ref = \@array;
$sub = \&function;
$attrs = \%MYATTRS;

Creating references to anonymous objects
$anonarray = [1,12,[57,42], "hike"];
$anonhash = {FOO => BAR, ADAM => EVE, CHIP => DALE};
$anonsub = sub { print "triggered\n” }

General dereferencing
push(@{$anonarray}, "crunch”);
print ${$anonhash}{"CHIP"};

Syntactic sugar
@list = @%$anonarray;
$$attrs{ID}++;
print "The answer is: ”, $anonarray->[2]->[1];
$anonhash->{ADAM} = MADAM,;
$count[$al{$b}[$c] += 42;

Reference type function
recurse($reference) if ref $reference;
ref($arg) eq HASH or die bad "argument”;

29

Objects

Object = Reference + Package

Constructors create reference and then “bless” it
sub new { return bless {NAME => FIDO}; }

Package has one destructor named DESTROY
sub DESTROY {
my $self = shift;
print "Dog $$self{NAME} died\n”;
}

Methods are ordinary subroutines with special first argument
sub method {
my $self = shift;
ref $self eq DOG or die "Type mismatch”;
Four ways to call a method
DOG::method($object, @ARGS)
$object->method(@ARGS);
method $object @ARGS;
$object->CLASS::method(@ARGS);
Multiple Inheritance of methods via @ISA
package DOG;
@ISA = qw(MAMMAL, ANIMAL, FRIEND);

30

Modules

package Cwd;
require 5.000;
require Exporter;

@ISA = qw(Exporter);

@EXPORT = qw(getcwd fastcwd);
@EXPORT_OK = gw(chdir);

By Brandon S. Allbery
#
Usage: $cwd = getcwd();

sub getcwd

{
}

sub fastcwd {

31

Importing

* The short way:
use Cwd;

* The long way:
BEGIN {
require Cwd;
import Cwd;
}
* The short way with a list:
use Cwd qw(getcwd chdir);

* The long way with a list:
BEGIN {
require Cwd;
import Cwd qw(getcwd chdir);
}
» The same mechanism is used for “pragmas”
use strict vars, subs, refs;
use integer;
no integer;
use less memory;
use sigtrap qw(ILL TRAP EMT FPE BUS SEGV);

32

@_

$_

$&
¢
&
$+

$.
$.
$/
$/

8l
$,
$,
$\
$\

$H
$;
8,

The English Module

@ARG $? $CHILD_ERROR
$ARG $! $0S_ERROR
$@ $EVAL_ERROR
$MATCH
$PREMATCH $% $FORMAT_PAGE_NUMBER
$POSTMATCH $= $FORMAT_LINES_PER_PAGE
$LAST_PAREN_MATCH $- $FORMAT LINES_LEFT
$~ $FORMAT_NAME
$INPUT_LINE_NUMBER $\ $FORMAT TOP_NAME
$NR $: $FORMAT_LINE_BREAK_CHARACTERS
$INPUT_RECORD_SEPARATOR $"L $FORMAT_FORMFEED
$RS
$] $PERL_VERSION
$OUTPUT_AUTOFLUSH $'D $DEBUGGING
$OUTPUT_FIELD_SEPARATOR $M $INPLACE_EDIT
$OFS $'T $BASETIME
$OUTPUT_RECORD_SEPARATOR $"W $WARNING
$ORS $"X $EXECUTABLE_NAME
$LIST_SEPARATOR $< $UID
$SUBSCRIPT_SEPARATOR $> $EUID
$SUBSEP $0 $PROGRAM_NAME

33

Other Standard Modules

» AutoLoader - standard autoloader base class

* Benchmark - run comparitive speed tests

* Carp - report errors outside of current package
* Config - access to all config.sh values

» Cwd - directory processing

» DynalLoader - the dynamic loader

* Env - make %ENV look like regular variables

» Exporter - base class for standard exporters

* Fentl - common fentl() definitions

* FileHandle - methods on filehandle objects

* NDBM_File - tie methods for NDBM

* ODBM_File - tie methods for ODBM

* POSIX - POSIX.1 functionality

» SDBM_File - tie methods for SDBM

* Shell - makes undefined functions call programs
 Socket - common socket() definitions

34

Yet More Standard Modules

 ExtUtils::MakeMaker - extension makefile maker
* File::Basename - portable flename manipulation
* File::CheckTree - verify permissions

e File::Find - walk the directory tree

» Getopt::Long - get long option names

» Getopt::Std - get short option names

* [18N::Collate - sort according to locale

* IPC::Open2 - open two pipes

¢ IPC::Open3 - open three pipes

» Math::BigFloat - arbitrary precision floating point
» Math::Biglint - arbitrary precision integers

» Math::Complex - complex arithmetic

* Net::Ping - routines to ping the net

* Search::Dict - binary search

* Sys::Hosthame - get hosthame somehow

* Sys::Syslog - log system messages

35

Still More Standard Modules

* Term::Cap - termcap

» Term::Complete - command completion

* Test::Harness - run regressions for extension
* Text::Abbrev - abbreviation expansion

* Text::ParseWords - split words like a shell

* Text::Soundex - the one and only

* Text::Tabs - translate tabs

* Time::Local - timelocal() and timegm()

Many others available from the net, including
* Tk
* DBI
» Curses
* SX
* Msql

36

Regular Expression Enhancements

* New options

/m Assume multiline (like $* = 1)
Is Assume single line
Ix Extended--allow whitespace
» Minimal (non-greedy) matching
*? Minimal *
+? Minimal +
?? Minimal ?

{n,m}? Minimal {n,m}

* Extension syntax: (?...)
(?sxi) Embedded options
(?:...) Non-backref grouping
(?=...) Positive lookahead assertion
(?!...) Negative lookahead assertion
(?#...) Comment

* Example:
s{ (?xgs)
N* (?# match the slashterisk)
*? (?# minimal number of anys)
*/ (?# match the asterslash)
HE

37

