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How It Really Was Back Then
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Humble (?) Beginnings

* Scalars to Represent Values
To give Perl a good memory.
* Filehandles to Represent Files
To give Perl good “legs”.
» Regular Expressions for Extraction
To give Perl good “eyes”.
» Literals that Allow Interpolation
For easy variable-width formatting.
» Formats for Reporting
For easy fixed-width formatting.
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What to Take, What to Leave Behind

explicit string lengths

substitution
translation

sed

functionitis

impenetrability
limitations
implicit newlines

interpolation

eval

lists
processes

C

control
numbers
named I/O
system calls
1/O limitations
control limitations
implicit looping
v sloth
Per| = awk
A strings
associations
cycle time

sh

multiple pass
backslashitis
compile-as-you-go
non-portability
list/string confusion

Bastardization

or

Hybrid Vigor?




My Irrationalities

- Syntax shouldn’t dangle in the wind

- Ordinary people like me hate abstraction
- C is wonderful

- Cis awful

- awk is neither

- Language is an amoral medium

- Ugly can be beautiful

- Beautiful can get ugly real quick

- Visual metaphors are for more than just
poetry

- | don’t care what other people think
- | care what other people think
- | think God has free will

Common Fallacies of Language Design

* “We need to start over from scratch.”

« “If we put in English phrases, that makes it readable.”
* “Simple languages produce simple solutions.”

« “If | wanted it fast, I'd write it in C.”

« | thought of a way to do it, so it must be right.”

* “This is a VHLL. Who cares about bits?”

* “You can do anything with NAND gates.”

« “Users care about elegance.”

* “The specification is good enough.”

« “Abstraction equals Usability.”

* “The common core should be as small as possible.”
« “Let’s make this easy for the computer.”

* “Most programs are designed top down.”

 “Text processing doesn’t matter.”

* “People should never have been given free will.”
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Larry’s Conjecture

For most people, the perceived usefulness
of a computer language is inversely
proportional to the number of theoretical
axes that the language attempts to grind.
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Waterfall or Whirlpool?

Specification

Coding

Testing
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The Unix Family Tree

V6

AN\

/
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The C Family Tree

K&R C
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The Perl Family Tree

(under construction)
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Easy Migration

C sed awk sh

s2p azp

expressions connections

Perl
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The Other Perl Family Tree

AN

\/

Perl
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Visual Distinctions

- You-pick-'em quotes
s/foo/bar/, m//, trlll, g/l, qa/l, gx//
trla-z][A-Z]
line-oriented

- Classes of operators
==vseqVvs-e

- Formats
@<<<z<gg<<<<<< @[||[|I[]] @>>>>>>>>>>>>>

- Types
$foo @bar %baz *beep

- Mumbles

print “ENTERING FINAL PHASE!I\n" if $verbose;
open(HANDLE, “myfile”) || die “Can’t open: $!”;
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How To Get There From Here

- Diagonalization

o

>

- All you need to know is that...
just_do_it()
- Landmarks
“I'll know it when | see it.”
- Geography vs. Orthography
“Who put that mountain there during the night?”
- Get a faster camel
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English as She is Programmed

e Familiar syntax
redo LINE if $something_left;
chop $head if traitor();
$california or &bust;
do { this() } until $done;

* Indirect objects
give $DOG $hone;

* Verbing nouns
dog($dog)

* Anything as a Boolean

if (@foo)
if (grep(/"#/, @lines)

* Aggressive tokenization
[fool / Ibar/ . .20 < <STDIN> % %bletch
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Those Funny Symbols

$ = “the” (singular)
@= “those” (plural)
%= “relationship”
& = “do”

* = "any sort of”

“No, no, hannie in foodie!”

21

Natural Language Concepts

 Learn it once, use it many times

* Learn as you go

» Many acceptable levels of competence

» Multiple ways to say the same thing

* No shame in borrowing

¢ Indeterminate dimensionality

* Local ambiguity is okay

 Punctuation by prosody and inflection

» Disambiguation by number, case and word order
* Topicalization

* Discourse structure

* Pronominalization

* No theoretical axes to grind

* Style not enforced except by peer pressure
 Cooperative design

* “Inevitable” Divergence
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Perl 5: The Big Nouns

- Compatibility

- Extensibility

- Usability

- Reusabillity

- Readability

- Scalability

- Maintainability
- Portability

- Responsibility
- Embeddibility
- Respectability?
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Deprecations and Depreciations

Deprecated for “action at a distance”
vec() to enable bitwise ops
"@literal”
$~k
St
$

Deprecated syntax
do verb()
if BLOCK BLOCK

Optionally deprecatable via compiler directive
Barewords
Symbolic references
Unqualified global variables

Depreciations (a better way provided)
select(HANDLE)
Verb markers
" as package prefix delimiter
Punctuation as variable names
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What's New

* Nearly a complete rewrite

 Usually 25-40% Faster

 Simpler grammar

* Much better diagnostics and docs

* Lexical scoping

* Arbitrarily nested data structures

* Anonymous data structures and functions
 Easy objected-oriented programming

* Modules

« External subroutines in C or C++ via XS
* Dynamic linking on many architectures
* Autoloading subroutines

» POSIX and other standard modules

* Improved configuration

» Package constructors and destructors

* Regular expression enhancements
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New Operators

« Ultra-low precedence logicals
and, or, xor, not

» chomp($line)

» exists $hash{$key}
s tie/untie

* abs($num)

* chr($num)

e access to various internal functions
uc, ucfirst, Ic, Icfirst
quotemeta
glob
formline

 qw(foo bar baz)

* bless($ref)

* pos($string)

* goto &subroutine;
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e Arrow as synonym

Miscellaneous Perl 5 Stuff

for comma

%day = (Sun =>0, Mon => 1, ...);

$childmess = mget(

ocC => $0c,
Ol => $oi,
SCOPE => $scopel,

ATTR_ID_LIST => $no_attrs);

* Functions as unary or list operators
$age = -M($filename);
@foo = split /¥, $bar, 3;

* You can now return from an eval

$prog = "return
eval $prog;

* Error propagation
die if $@;

* Lexical scoping
my $var = shift;

$a?1:2"
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BEGIN and END

* Explicitly in some pseudo awk:

#!/usr/bin/perl -nl

BEGIN {
$accum = 0;

}
$accum +=$_;

END {
print $accum;

}

* Implicitly in  use POSIX qw(setlocale fentl_h);

BEGIN {
require POSIX;

import POSIX qw(setlocale fcntl_h);
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References

Creating references from named objects
$ref = \@array;
$sub = \&function;
$attrs = \%MYATTRS;

Creating references to anonymous objects
$anonarray = [1,12,[57,42], "hike"];
$anonhash = {FOO => BAR, ADAM => EVE, CHIP => DALE};
$anonsub = sub { print "triggered\n” }

General dereferencing
push(@{$anonarray}, "crunch”);
print ${$anonhash}{"CHIP"};

Syntactic sugar
@list = @%$anonarray;
$$attrs{ID}++;
print "The answer is: ”, $anonarray->[2]->[1];
$anonhash->{ADAM} = MADAM,;
$count[$al{$b}[$c] += 42;

Reference type function
recurse($reference) if ref $reference;
ref($arg) eq HASH or die bad "argument”;
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Objects

Object = Reference + Package

Constructors create reference and then “bless” it
sub new { return bless {NAME => FIDO}; }

Package has one destructor named DESTROY
sub DESTROY {
my $self = shift;
print "Dog $$self{NAME} died\n”;
}

Methods are ordinary subroutines with special first argument
sub method {
my $self = shift;
ref $self eq DOG or die "Type mismatch”;
Four ways to call a method
DOG::method($object, @ARGS)
$object->method(@ARGS);
method $object @ARGS;
$object->CLASS::method(@ARGS);
Multiple Inheritance of methods via @ISA
package DOG;
@ISA = qw(MAMMAL, ANIMAL, FRIEND);
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Modules

package Cwd;
require 5.000;
require Exporter;

@ISA = qw(Exporter);

@EXPORT = qw(getcwd fastcwd);
@EXPORT_OK = gw(chdir);

# By Brandon S. Allbery
#
# Usage: $cwd = getcwd();

sub getcwd

{
}

sub fastcwd {
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Importing

* The short way:
use Cwd;

* The long way:
BEGIN {
require Cwd;
import Cwd;
}
* The short way with a list:
use Cwd qw(getcwd chdir);

* The long way with a list:
BEGIN {
require Cwd;
import Cwd qw(getcwd chdir);
}
» The same mechanism is used for “pragmas”
use strict vars, subs, refs;
use integer;
no integer;
use less memory;
use sigtrap qw(ILL TRAP EMT FPE BUS SEGV);
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@_

$_

$&
¢
&
$+

$.
$.
$/
$/

8l
$,
$,
$\
$\

$H
$;
8,

The English Module

@ARG $? $CHILD_ERROR
$ARG $!  $0S_ERROR
$@ $EVAL_ERROR
$MATCH
$PREMATCH $% $FORMAT_PAGE_NUMBER
$POSTMATCH $= $FORMAT_LINES_PER_PAGE
$LAST_PAREN_MATCH $- $FORMAT LINES_LEFT
$~ $FORMAT_NAME
$INPUT_LINE_NUMBER $\  $FORMAT TOP_NAME
$NR $: $FORMAT_LINE_BREAK_CHARACTERS
$INPUT_RECORD_SEPARATOR $"L $FORMAT_FORMFEED
$RS
$] $PERL_VERSION
$OUTPUT_AUTOFLUSH $'D $DEBUGGING
$OUTPUT_FIELD_SEPARATOR $M $INPLACE_EDIT
$OFS $'T $BASETIME
$OUTPUT_RECORD_SEPARATOR  $"W $WARNING
$ORS $"X $EXECUTABLE_NAME
$LIST_SEPARATOR $<  $UID
$SUBSCRIPT_SEPARATOR $> $EUID
$SUBSEP $0 $PROGRAM_NAME
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Other Standard Modules

» AutoLoader - standard autoloader base class

* Benchmark - run comparitive speed tests

* Carp - report errors outside of current package
* Config - access to all config.sh values

» Cwd - directory processing

» DynalLoader - the dynamic loader

* Env - make %ENV look like regular variables

» Exporter - base class for standard exporters

* Fentl - common fentl() definitions

* FileHandle - methods on filehandle objects

* NDBM_File - tie methods for NDBM

* ODBM_File - tie methods for ODBM

* POSIX - POSIX.1 functionality

» SDBM_File - tie methods for SDBM

* Shell - makes undefined functions call programs
 Socket - common socket() definitions
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Yet More Standard Modules

 ExtUtils::MakeMaker - extension makefile maker
* File::Basename - portable flename manipulation
* File::CheckTree - verify permissions

e File::Find - walk the directory tree

» Getopt::Long - get long option names

» Getopt::Std - get short option names

* [18N::Collate - sort according to locale

* IPC::Open2 - open two pipes

¢ IPC::Open3 - open three pipes

» Math::BigFloat - arbitrary precision floating point
» Math::Biglint - arbitrary precision integers

» Math::Complex - complex arithmetic

* Net::Ping - routines to ping the net

* Search::Dict - binary search

* Sys::Hosthame - get hosthame somehow

* Sys::Syslog - log system messages
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Still More Standard Modules

* Term::Cap - termcap

» Term::Complete - command completion

* Test::Harness - run regressions for extension
* Text::Abbrev - abbreviation expansion

* Text::ParseWords - split words like a shell

* Text::Soundex - the one and only

* Text::Tabs - translate tabs

* Time::Local - timelocal() and timegm()

Many others available from the net, including
* Tk
* DBI
» Curses
* SX
* Msql
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Regular Expression Enhancements

* New options

/m Assume multiline (like $* = 1)
Is Assume single line
Ix Extended--allow whitespace
» Minimal (non-greedy) matching
*? Minimal *
+? Minimal +
?? Minimal ?

{n,m}?  Minimal {n,m}

* Extension syntax: (?...)
(?sxi) Embedded options
(?:...) Non-backref grouping
(?=...) Positive lookahead assertion
(?!...) Negative lookahead assertion
(?#...) Comment

* Example:
s{ (?xgs)
N* (?# match the slashterisk)
*? (?# minimal number of anys)
\*/ (?# match the asterslash)
HE
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